« 超高速画像処理ボード | トップページ | 単純移動平均フィルタ伝達関数 まとめ 比較 »

2008年11月 6日

単純移動平均の時間波形(4回平均)

Photo

1000Hzサンプリング(制御周期1ms)の4回移動平均フィルタに100Hz,200Hz,250のsin波を入力した場合の、

入力x(nT)、出力y(nT)、内部状態のx{(n-1)T}、x{(n-2)T}、x{(n-3)T}を示す。横軸の単位はms。

x(nT)を正弦波として、

  y(nT) = x(nT) + x{(n-1)T}  + x{(n-2)T}  + x{(n-3)T}          

を計算したグラフである。

サンプリング周波数1000Hzの1/10の100Hzの正弦波を4回移動平均フィルタへ入力すると、出力振幅が入力の約3倍になる。

サンプリング周波数1000Hzの1/5の200Hzでは、出力振幅が入力の約1倍。

サンプリング周波数1000Hzの1/4の250Hzでは、出力はゼロ。フィルタリングされる。

たとえば、サンプリング周波数が2倍の2000Hz(制御周期500us)のとき、やはり、サンプリング周波数2000Hzの”1/4”の500Hzでは、出力がゼロになる。

読者のみなさんのシステムのサンプリング周波数が1000Hzのn倍だったら、特性はn倍の周波数に拡大されると考えてください。1/nでも同様。

”2回”移動平均の場合は、サンプリング周波数の”1/2”の周波数の正弦波を入力すると出力がゼロ。

”4回”移動平均の場合は、サンプリング周波数の”1/4”の周波数の正弦波を入力すると出力がゼロ。

エクセルの元データはこちら「motion_oyaji_wave_MA4_081029.xls」をダウンロード 

”2回”移動平均の時間波形はこちらhttp://robotcontroller.cocolog-nifty.com/blog/2008/10/post-1979.html

Link: 

「モーションおやじ」のプライムモーション社(みんなで手軽にWindowsリアルタイムIO制御)

プライムモーション(Windowsで手軽にリアルタイムIO制御)

|

« 超高速画像処理ボード | トップページ | 単純移動平均フィルタ伝達関数 まとめ 比較 »

技術フィルタ」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)


コメントは記事投稿者が公開するまで表示されません。



トラックバック


この記事へのトラックバック一覧です: 単純移動平均の時間波形(4回平均):

« 超高速画像処理ボード | トップページ | 単純移動平均フィルタ伝達関数 まとめ 比較 »